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ABSTRACT

This report describes methods for the proper design of first-order,
recursive, fixed-weight, linear filters. Expressions are derived and listed
for commonly used design parameters such as noise ratio, transient response,
and truncation error. The performances of critically damped and steady-state
optimum filters are compared. Design curves are given that can be used to
select the weights of the steady-state optimum filter from total error
requirements.
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1. Filter Equations

The first-order linear filters under consideration are those of the
f7orm.

.y ( 1 , + l : y + ry ( n1 )

A (n) + -%% , (11)

(n) Y (n) + (n ) -.
y (11) =y 01) +-1w?.(n) I x (11 - (n)] .(2)"

Il statu vector notation, these equations may be written

Y(n + 1) = 4'I(n) 7(n) (3)

Y(n) Y(n) + W (n) [X (n) - Y (n)] (4)

F,,In the ircding equations,eq.t

Y(. + 1) L + 1

is the predicted system state made at time nT for time (n 4 1)T given n measure-
merits. T'he equation

V(n)~~Y (n + 1)•=Lgn

iti tihe smoothed s9ystell State m1ade at tinie nT for timie nT given n measure-
ments. The equa11tion

X X ( n) l ( n1)

is the position measurenment corrupted by white Gaussian noise. The teian T

Iix tile satmpling interval, and n is the time index. The equation

[ T]
Is thb. state transi.tion inmt rix tor a constant velocity triajcltory. The equation

if I 1 01
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] • is the observation matrix. The weighting matrix is

[W (n)]
W (n) w2 I (n)I

'In the application considered for this filter, v and y are estimated posi-
tion and velocity, and x is measured position along one coordinate axis. Equa-
tion (1) or (3) is called the prediction equation, and Equation (2) or (4) iscalled
the smoothing or correction equation. The objective of this paper is the
selection of a constant weighting matrix WV to get the best estimate of the predicted
state Y. In mott of the literature dealing with a constant weighting matrix,
wI is called g or a, and TW2 is called h or [3. The g-h notation will predominate
in this paper.

The overall filter•'performance may be described by three factors. Thev
are:

a) Variance reduction ratio

"b) Transient response

c) Truncation error.

A fourth and sometimes dominant factor is computional complexity. In tracking
manY targets by use of a, time shared computer and radar, this factor limits

Sthe filter:brder to first or second, necessitates the use of constant weights,
and makes smoothing in one eccrdinate at a time highly desirable.

2. Variance Reduction Ratio

The variance reduction ratio is the ratio of the rms noise output
from the filter to the rms noise input. It is sometimes more appropi-iately
called the noise amplification factor, since it may necessarily exceed unity if
the filter requirement is for good dynamic response. In general, low noiseoutput requires small weights, and good transient performance requires large

weights. A mathematical expression can be derived for the first order filter
in which W I= g and W2 = h/T are constants. If equations (1) and (2) which
occur at time nT are combined with the same equations for time (n-1)T, all
quantities except predicted positions and measurements may be eliminated to
yield

y (n+ 1)= [g + h] x(n) - gx(n- 1) + [2- g- h] v(i•)

+ [g -1] y(n - 1) (5)
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Equation (5) gives predicted position in the standard feedback filter form

(n = a. x(n i) - (n -j) (G)

4 ~i=O 1 j=0

In Equation (5), the output is the weighted sum of the last two inputs and

outputs.

Since the filter is linear, the Superposition Theorem may be invoked

in calculating the noise ratio which is independent of any trajectory dynamical

errors. If the input is sampled white noise with variance 3 2 - E [x 2 ], in•i • x

Swhich E[ ] denotes "epected value of," then the output noise variance is

(TA' = E [ 2 (n+ 1)]. Squaring Equation (5) and taking the expected value of
Y

the result givc.

(T-2 (g*+ h) 2 u 2+ (x 2+ (2-g-h) 2 (7^2 (g 1) 2 - 2

- 2g (2-g-h) EIx(n- 1)y(n)] + 2 (2-g-h) (g- 1) E[y(n-1)y(n)]
(7)

In arriving at Equation (7), it was assumed that the input and output noise
distribitions are stationary so that

Elyv2 (n 4- 1)1 = E[v 2(n)l = E[y 2 (n- ()] = - 2

y

and

E1x.(n)] = E x2 (n-1)] =o r

Also, the input noise samples are independent so that

Efx(n) x(n - 1)] = 0

and predictions are independent of future measurements so that

Elx(n) y(n)] Elx(n) y(n- D)I = E xn- N ) y- 1 1)] 0.

The remaining two terms in Equation (7) involve correlated quantities but can be

evaluated from Equation (5). Writing Equation (5) for y (n) , multiplying by

X (n - 1), and taking the expected value of the result gives

Elx(n - 1) y (n)] - (g+ h) 2 a ()

x3



ni hich use has been made of the same stationarity and independence assumptions
asbefore. Again, writing Equation (5) for (n), multiplying by x(n-1), and
taiing the expected value gives

E -E[y(n) y(n 2-g 2.-g-h) u2 g (g + h) 2 (9)

after making the same assumptions as before and making use of Equation (8).
Finally, substituting Equations (8) and (9) into Equation (7) gives

; .... 2g 2+ gh+ 2h
u2  g (4- 2g-h)

Equation (10) gives the, ratio of the variance of output noise in predicted posi-
* tion to that of measurement noise for constant filter weights. This is one

equation applicable to making a proper choice of g and h. Similar equations
cafi be derived for smoothed position and predicted velocity. They are:

2

S2g 2 + 2h - 3gh
2- g(4-2g-h) (11)

1 2h2

SxT g(4-2g-hx

Equations (10), (11), and (12) can also be derived from the system
unit impulse response by using

crý2

2or h(n) , (13)
X 0

in which h(n) is the inverse transform of H(Z) Y (Z)/X (Z), and Y (Z) is
obtained by taking the transform of Equation (5) for predicted position.
Equation (13) can be evaluated from the integral for the sum of a squared
sample sequence [ 1].

00

0 2 j

in which the path of integration is the unit circle in the Z-planc. The mean
square noise ratio then becomes 2vij times the sum of the residues of
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Equation (14) at the interior poles of the integrand. However, it is felt that
the first method of derivation more clearly points out the assumptions that have
to be made in deriving Equations (10), (11), and (12). The same assumptions
have to be made in deriving Equation (13).

The assumptions of stationarity should be kept in mind when applying equa-
tions such as Equation (10). The input 9tationarity assumption merely implies that
the root mean square measurement noise does not change significantly during
one sample period. This is entirely reasonable from the standpoint of the
trajectory itself; that is, measured coordinates do not change fast enough
between samples to affect the expected noise, which is a function of position.
The change in measurement noise due to target scintillation is another matter.
In practice, the target's effective radar cross section can vary with time such
that significant deviations L, the s-stem signal-to-noise ratio oc-ur at rates

s close to normally used tracking rates. However, there is evider -e that, for
periodic variations in signal to noise in the steady state, Equation (10) still
gives the ratio of total mean square noise output to total mean sZ-,are noise
input [2]. Even though the input noise is stationairy, the output noise need not
be. There is a transient period following track initiation in the noise ratio

j itself about which not enough is known at this time. One reference indicates
that Equation (10) gives an entirely erroneous result during this transition
period"I 3]. Further wyork is planned in this area.

3. Transient Response

The specification of system transient response has always been
somewhat of a problem. The classical method is the use of time constant, or
time for the output to decay to 1/e of some initially stored value. Other criteria
such as 10 to 90 percent rise time have been used. These ideas are still
applicablc. as definitions of transient response in sampled data systems, but a
more elegant approach is to calculate the sum-squared system. error output
caused by some input for which the output should eventually converge. As was
indicated in Equation (14), if f (nt) is a convergent series of data samples
whose ultimate value is zero, then the sum of the squares of all the samples
from zero to infinity is given by

2 F(z) F(z-1) z- dz . (15)

In Equation (15), F(z) is the z transform of f(nt) defined b~y

00 S~_n
F(z) = f (nT) z (16)

n=0
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and the path of integration is the unit circle.

The transform of Equation (5) is

g + h - gz I

" 1(z) = 1- (2-g-h)z - (g-1) z-(

Since the first-order filter will converge on a position ramp input (velocity

step) without error, a reasonable input to be used as a basis for transient

response calculation is

x(nT) =nT ,(8

whose transform is

Tz-1
X(z) (1-z-i) 2  (19)

The desired prediction is

T
SY (z) zX (z) - 2  (20)

The transform of the error is

T
E- ̂(z) = Y(z) - Y(z) = g _ (gl)z_2 (21)S....y 1- (2-g-h) z-1 (g 1)

after substituting Equations (15), (17), and (18). Evaluating the integral

v-2 1
C E(z) ' E-(z-') z- dz, (22)

by summing the residues at the two poles inside the unit circle, gives

T (2 - g)(23)
Zy gh (4 - 2g - h)

for the sum-squared error in predicted position of the first order filter with

a ramp input. Similarly, it can be shown that for smoothed position and

velocity,

6
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y T2 (2-g) (1-g) 2

"y gh (4- 2g- h) 24)

S(2-g) + h(1-g)(25)
gh(4- 2g- h)

4. Truncation Error

It was stated in the previous section that a first-order filter will
converge on a constant velocity noise free input trajectory with zero error. It
is also true that a constant acceleration input will be estimated with a constant
error in the steady state, and trajectories with higher derivatives will cause
errors that grow as long as the higher derivatives do not change sign.
Fortunately, real target trajectories cannot possess monotonic higher
derivatives along any given coordinate axis for verr 1--- and the position errors
that result can be kept within reasonable limits. The steady-state error that is
caused by higher derivatives than the first is called truncatior' error for the
first-order filter.

The mathematical approach to estimating truncation error is to assume
that that due to acceleration is predominant. This is equivalent to assuming that
acceleration does not change sigrificantly in one sample period. This is a
good assumption for trajectories for which a first-order filter is useful. In
practice, it is four"- that tracking filters higher than second order are rarely
necessary and a first-order filter is frequently adequate. It is also true that
the noise amplification ratio tends to increase with the order of the filter;
that is, a low-order filter will follow a low-order curve with less noise output
than a higher order filter. The order of the filter, then, like the choice of
smoothing constants is a compromise between noise reduction and dynamic
response.

The fact that truncation error for the first-order filter can be closely
approximated for several representative trajectories by the response to the
second derivative input has been demonstrated experimentally [41. The
analytical investigation can proceed as follows: Let the input be

x(nT) A/2(nT) 2 , (26)

which corresponds to a parabolic trajectory in one coordinate with acceleration
A. The Z transform is

7



XLZ /2T 7 + z* (27

Then the transform of the desired output is

Y z)zX() l T LI+ - )(28)4

Y z - r ) (Y) - Y (Z) (29) 4

and Invoking the final value theorem, the steadiy-state err(J is obtaiised:

A n ) lm (1 z-) - (z-)(S)'

Byuin qatosy1) (2)3n'2)t omth ro x~cso

nT--o z-1

The result is ,

1 . A~~� (A ) = - AT'/h (81)
* I y

A less sophisticated but simpler tceohnique is to substitute

y(n + 1) =A/2 (n+ 1)? TV+ A(n+ 1) +

y (n) A/? n?, T 2 + A;(n).

Sy(n - 1) =A/2 (n - W) T•'+ a- (n - 1)
Y

X(n- 1) A/2 (n-i)2  (31

into Equation (5), set A- (n + 1) = A- (n) = A- (n - 1) in the steady state, and
y y y

solve for A^ (n + 1). The result is the same. As a matter of record, thv
y

truncation errors for snioothcd j0osition arid velocity are

A.- AT 2 ('3)
y h

- AT• 2g (,h
y 2h

8

,'•Th'1,
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5. Weight Selection

The weights g and h must be selected to give some stittabla
Compromise between dynamic remponise and noise ratio which mieets, the overall
system error specifi cation. Somnetfine the sampling periodI T can be varie'd
within llndt8to aid in nu'aing the requir~~mniits. Two bascre) ation ships

a. Y'he Critically. Dqrmpý'4 Filtelr

As can be scon I r~r Equation '(17)., the fi st-order hitl.!rfia ~ a
SeCond-degriee polynoiAul In Ito transfer function. It his. beeun recl~gnized fot~
many years that, thýŽ critically daipe(I condlition In a sy'stern cIha'ract~rized by
such a function li4s r~asonably fast:.and Wpll-beha~'vai runsient response.' The
poles of Equation (17) are

- I~ 4(g-) I 35)

and critical daamping occux- when-

+ 4 (g- 1) - '

Aleb, yapyn Ruhsmto to the denorninutor p'Olyno'mjkal of EqigAtoion

'S+ I

'ThO firot-6rder tfilter is stable if

g > r



The conditions in Equation (39) indicate that g and h lie within the triangle shown

in Figure 1. The locus of Equation (37) is also shown in Figure 1 showing.the

combinations of g and h normally used for the critically damped filter. Actually,

the useful part of the curve lies between h o and h = 1, since for larger

values both noise ratio and time response increase. For example, if the time
response is defined to be the 1/e time constant in position error which results
from a velocity step input, the inverse transform of Equation (21) with equal

denominator roots gives for the time constant the value of n for which

log [(n+ 1)(1- g) n/2]= - 1 . (40)
e

If Equation (40) is plotted against the noise ratio [Equation (10) Figure 2 is

obtained. The lower portion of the curve is the useful ran.ge and is obtained

using the m.,us sign in Equation (37). The upper curve, obtained using the plus
sign, gives more noise for the same time response.

1 b. The Optimum First-Order Filter

There are two weights to be determined in the first-order
filter, and specifying one of them is equivalent to fixing one performance
criterion, such as noise ratio. Then a relationship exists between g and h which

minimizes the transient error for this specified noise ratio. This means that
the function

6. 6^+ X Z2^ (41)
y Y

in which X is a constant and 62 and Z2 are given by Equations (10) and (23)
Y y

must be differentiated with respect to g and h, set equal to zero, and h solved
for in terms of g. The result is

h = g2/ (2-g) (42)

Further details are given by Benedict and Bordner [61. It might also be pointed
out that Benedict and Bordner showed that not only does Equation (42) minimize
Equation (41) but that the filter given by Equation (5) is the optimum linear
filter for tracking a noisy ramp among all the filters of the form in Equation (6).

That is, no other combination of past measurement and predictions will do any
better than the last two.

10
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If the Kalman filtering technique 1 71 is applied to the estimation
of a constant velocity trajectory given noisy position measurements, Equations

, (3) and (4) give the predicted and corrected states. The weights are complited
for each measuremient from

V(n)= P(n) I [Ii T

IP (11) (1,3(n - 1) 'D +Q

0(n-) = I1 - W(n-1) III P(n-i) (43)

,.•in %ýhieh 11 is the covariance err-or niatrix in predicted state .amd Plsthecorretetd

covartance error matrix. Other matrixes were defined previously except for Q,
which will bi- taken to be

00

Q 0 rM (44)

In defining Q in this manner, all deviations in the trajectory caused by deriva-
tives higher than the first are treated as white noise with variance, and this

an1uuIver noise Is aisulned t4 affect only the uncertainty In predicted velocity.

during the sample period over which it Occurs.

Expanding ithe matrixes in Equation (43) leads to the following equations
for the eleennts of W (n) and P On):

WV(n) Pl 1(n)/[ P11 (n) + 11]

W2 (n) = Piz(n)/!i'ii(n) + it] (45)

!" 1(n-1) It+ 21T W2 (n-1) I+ T '2.(n-1) - '12w,(n-l) P1 2 (n-l)

"12(n --1 W2(n-1) It + '' 122 (n-1) -1) W?(n-1 ) P1 2ri(- 1 .

P 2 (n) 0 1')2(0-1) - W201(n-1) l 12(n-1) + M , (46)

in which

I - (2 is the measurement variance and

M o - 2M is the maneuver variance (47)

11M
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If It and M are constant, W (n) and P(n) become constant matrixes as the
time indox n increases. In the steady state, the time indexes in Eluation (46)
may be dropped and the constant matrix elements solved for. If this is done,
there is obtained

P 1 - P12 W 1i1 + T W2 11

W2 P12 M (48)

from which,

TW 2 W 1'/ (2-W t) (49)

4

TR (2-W) 2 (1-WV1) (50)

or in g-h notation,

h g2/ (2-g) (51)

R (2-g) (l-g) \52)

Equation (51) is the same as Equation (.42), which was derived by calculus of
variations. Thus, this ateady-state filter is the same as Benedict and
lBordner's optimum fixed weight filter. However, the Kalman filter fixes the
weights through Equation (52) which gives g In terms of the sampling period,
measurement noise, and expected maneuver noise. In the optimum fixed weight

uflte•, the final choice of weighti iks still a compromise between Equations (10)
tind (23). The steady-state Kalman makes the choice automatically if values
esit be selected for T, M, and R.

6. Filter Comparison and Design Curves

One objective of this paper is to compare the critically damped
filter with the steady-state Kalman filter. Some basis for comparison must be
chosen and that tar, -Will 1e one ot relative transient and truncation errors for
equal noise ratios. Equations (37) and (42) have been plotted in Figure 3
showing h in terms of g for the two filters. In Figure 4, Equations (10), (23),
and (31) for noise ratio, transient error, and trunca'ion error are shown
(normaliz.d) for the critically damped filter as functions of g. The same
quantities are shown for the steady-state filter in Figure 5. In Figure 6, the
sum-squared tranaient errors and truncation errors for both filters are shown

12
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as funeAtionis of mean-square noise ratio. Figure ( showsi that foi a given outtpnl
noiii rr,)o the steady-state filter has a transient error about 8.11 fllC( ,ut as
great as ilhat of the critically damped filter and a truncation error about 72

In Figures 7 (a) and (b), g and h arc shown as functions of the parameter
i'ijM/R 1for the steady-state filter. Tlcse figures cover a wide range because M
is normally a function of Ti72 so that T2M/R1 is a function of T 4. In general,
Figure 7 (a) is useful for tracking intervals on the order of a second and Figure
7 (b) for Intervals around 0. 1 second.

Figures 7(a) and (b) are valid regardless of how M is chosen. In
practive, T (or its allowable range) is known and a good estimate can be made
of R, the measurement variance. A reasonable way to estimate M is to assume
some maximum acceleration, A for the trajectory so that the greatest

velocity change, L one sa •ple period is TA . Let this quantity be related
too by max

NlM =TAmax (53)

so that
.Mýj2 1 T?, A2 (54)

M B max
m ; I

and f

T - T1 Am /32o" 2 (55)
it ma x

or

Teqa=otmaA (56)
x x

If the maneuver were truly random from sample to sample, B would be set

equal to R so that TA would be the 3'r value of the maneuver noise. But a
max

velocity maneuver is not really white noise. If the target accelerates at all,
there will be a high degree, of correlation between samples in the maneuver.
There are techniques available for mathematically modeling the maneuver to

account for this correlation, but this introduces more states to be estimated.

13



Like the question of track initiation, this is a subject buot left for
future Investigation.. Some aid in selecting 13 can be obtained by plotting culrves
of truncation error and noise ratio as in Figure 8. The normalized :ýT noise
error is 36 from Eqnation (10) which is plotted as a function ol g using Equation
(43) for h. The normalized maximum truncation error can be obtained by
equating Equation (56) to the square root of Eq•uation (52)!

: T2 A
- (57)'• B Y) (2-g ) I/ - 9

x

Recognizing that the truncation error is

A2max..

A T (58)
max h

and

h =g'2 /(2-g) , (59)

then the normalized maximum truncation error is

A
max 13

x

Equation (61) is plotted as a function of the parameter B in Figure 8 and shows
that the filter weights the truncation and noise errors equally for B between 1
and 2. In Figure 9, B is plotted against the worst expected error,
*36 + max/! , with T7 A /agirx as a parameter. From these curves, an

estimate can be made of the v0 ,e oi B which minimizes the maximum error.
In Figure 10, the total error is plotted as a function of T2 A with x as a

max rx
parameter. Figure 9 is useful when the absolute minimum total error munt be
obtained in order to maintain track. Figure 10 is more useful against maneuver-
ing targets when the least obtainable error is not required.

Also in Figure 10 i8 shown the total error for the case jr 1, h 1, or no
smoothing, given by

"y (n+ 1) = 2x(n) - x(n-. 1) (61)

for which

"6= 4Wand A6 T2A . (62)

14
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It can be deduced from Figure 9 that when truncation error can be
expected to exist throughout, the trajectory, such as when tracking a ballistic
nmissile, the choice of B = 1 or less is optimum. Hiowevcr, for small values of

,T" Amaft/yx, 13 less than one does not drastically change the total error from

what it is with B = I. It is further seen frýni Figure .10 that for ratios of
T 12 x greater than 4, the reduction in error over that of the no-feedback

filter is completely negligible and a no-feedback filter should be used.

Against a maneuvering target, the largest value of B should be used
• such that the worst expected error, A + 3,•r , does not exceed the confines•4 max x "
of the radar measurement volume. This will insure that track the not lost

during a maximum maneuver while giving the least noise during no maneuver.

Incidentally, Figure 10 does not indicate that values of B to the right of
fthe no smoothing curve arc useless. As B decreases, the cull'ves move across

the page to the left then back toward the no smoothing lind as B gets very small.
No smoothing corresponds to 13 = 0.

As an example of the use of the curves, suppose that T2 Area(T is.

estimated to be 0. 1 and the normalized coordinate extremity of the radar
volume is 6. 0. From Figure 9, the optimulm value of B Is about 0. 6 and the
M.worst error is :. 0, well within the radar volume. The noise ratio from
Figure 8 is 2, 15. If the radar volume dimension 6. 0 is used for A + 36,Smax /(x

then, f romi Figure 10, [3 4 and the noise froin Figuire 8 Is 1. 22. Thus the
no-maneuver error is about half what it is with the least maximum error condi-
tion, but track is maintained in either case.

7. Conrlusion

The mathematical techniques useful in the analysis of first-order
digital filters have been reviewed and demonstrated. The important performance

measures (noise ratio, transient error, and truncation error) have been
derived and listed for predicted position, smoothed position, and velocity. The
assumptions made in these derivations have been noted and their effects dis-
cussed where possible. The steady-statc optimum filter has been compared to
the critically damped filter and shown to have less truncation and transient
error for a given noise ratio. Design curves have been provided that can be
used to select the smoothing weights if the ieasuurement noise and trajectory

dynamics can be estimated. This filter, however, in which the weights are
constant, is not presently recommended for track initiation.

15



For ballistic missile tracking, the truncation and noise errors should be

weighted about equally with the parameter B = 1. A larger value of B would be[better against a maneuvering target, provided the total error does not exceed
A he radar measurement volume.
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